प्रस्तारोद्दिष्टनष्टानि
तथा मेरुपताकिके ।
मर्कटी चेति षट् प्राहुः
प्रत्ययान् वर्णमात्रयोः ॥ १ ॥
prastäroddiñöa-nañöäni tathä meru-patäkike
|
markaöé ceti ñaö prähuù
pratyayän varëa-mätrayoù || 1 ||
The pratyayas[1]
of the syllabic and moraic metres are said to be six: prastära, uddiñöa,
nañöa, meru, patäkä, and markaöé.
अथोक्तानां छन्दसां
प्रत्ययार्थं प्रस्तारादिकं दर्शनीयम् । अतस्तदुद्दिशति प्रस्तारेति । तत्र
वर्णच्छन्दसां प्राथमिकत्वात् तेषां तत्पूर्वं वाच्यमिति व्यञ्जयति
वर्णमात्रयोरिति ॥ १ ॥
Now in order to analyse the metres
described, six elements starting with prastära, etc. are to be
explained, and therefore the author mentions them. In the compound varëa-mätrayoù
the word varëa appears first because the syllabic metres were described
first, and similarly here they are also to be enunciated first.
सर्वगुर्वादिमं वृत्तं
सर्वलघ्वन्तिमं भवेत् ॥ २ ॥
sarva-gurv-ädimaà våttaà
sarva-laghv-antimaà bhavet || 2 ||
The first metre should be
that in which all syllables are heavy, and the last one the metre in which all
syllables are light.
जातीनां प्रस्तारेषु
कृतेषु प्रथमं छन्दः सर्वगुरुवर्णं दृष्टमन्तिमं तु सर्वलघुवर्णमित्याह – सर्वेति
॥ २ ॥
Here the author says that upon
expanding the different metrical categories, first the metre in which all
syllables are heavy is considered, and at last the metre in which all syllables
are light.
तत्र वर्णप्रस्तारः –
tatra varëa-prastäraù –
Now the syllabic prastära
(expansion) is described –
पादे सर्वगुरौ गुरोः
प्रथमतः कुर्यादधस्ताल्लघुं शेषं तूर्ध्वसमानकं विरचयेदूने गुरूनर्पयेत् ।
पादः सर्वलघुर्न
यावदुदियात्तावद् विदध्यादिदं प्रस्तारः खलु वर्णवृत्तनिपुणैरेष स्मृतः पण्डितैः ।
अर्धमर्धसमे पादो विषमे
कृत्स्नमेव सः ॥ ३ ॥
päde sarva-gurau guroù
prathamataù kuryäd adhastäl laghuà
çeñaà türdhva-samänakaà viracayed üne gurün arpayet |
çeñaà türdhva-samänakaà viracayed üne gurün arpayet |
pädaù sarva-laghur na yävad
udiyät tävad vidadhyäd idaà prastäraù
khalu varëa-våtta-nipuëair eña småtaù paëòitaiù |
ardham ardha-same pädo viñame
kåtsnam eva saù || 3 ||
The foot in which all
syllables are heavy is placed first, below which one should write one light syllable.
The rest should be arranged in the same way as above. In the preceding empty
place one should write heavy syllables. One should apply this rule as long as
the foot in which all syllables are light does not appear. This is called prastära
by scholars expert in syllabic metres. In the half even metres half of the
verse is arranged so, while in the uneven metres each foot should be thoroughly
analysed.
तत्र वर्णप्रस्तारलक्षणमाह
पादेति । आदौ सर्वगुरुः पादः स्थाप्यः, “सर्वगुर्वादिमं वृत्तम्” इत्युक्तेः
। तस्मिन् सर्वगुरौ पादे स्थापिते सति तत्प्रथमस्य गुरोरधस्तात् लघुं कुर्यात्
लिखेत् । शेषं सर्वमूर्ध्वसमानकं विरचयेत्
। ऊर्ध्वमुपरिष्टाद्ये वर्णा गुरुरूपा गुरुलघुरूपा वा स्युस्ते सर्वे यथावत्तदधो
लेख्या इत्यर्थः । इमं विधिं पुनः पुनः कुर्यात् । तत्र द्वितीयतृतीयादिके कृत्ये
क्रियमाणे सत्यूर्ध्वस्थिताद्याद् गुरोरधस्ताल्लघुर्लेख्यः । शेषं तु
सर्वमूर्ध्वगतवत् कुर्यात् । अथ गुर्वधोलिखिताल्लघोः पूर्वमूने स्थाने गुरूनर्पयेत्
विलिखेदिति व्यक्तापेक्ष्यं बहुवचनम् । गुरुं गुरू गुरून् वेत्यर्थः । इदं कृत्यं
तावद् विदध्यात् कुर्यात् यावत् सर्वगुरुपादः सर्वलघुः सन्नोदियात् न
दृष्येतेत्यर्थः । एष खलु वर्णवृत्तनिपुणैः पण्डितैः प्रस्तारः स्मृतः ।
वर्णप्रस्तारोऽयमित्यर्थः । प्रस्तारो विस्तार इत्यर्थः । एषा समवृत्तानां
प्रस्तारकल्पना । अर्धसमवृत्तानां त्वर्धस्य पादकल्पना कार्या । शेषं पूर्ववत् । यदुक्तम् “अर्धसमस्य
प्रस्तारे त्वर्धस्य प्रस्तारः कार्यः” इति । विषमाणां तु
प्रस्तारे छन्दसः पादकल्पना कार्या । यदुक्तं “विषमप्रस्तारे पादचतुष्टयस्य
प्रस्तारः कार्यः” इति । इत्थं त्रिविधानां छन्दसां प्रस्तारो बोध्यः ॥
३ ॥
The
author now describes the characteristics of the syllabic prastära. The
foot[2] in
which all syllables are heavy should be placed in the beginning, for this was
stated in the previous verse. When the foot (päde) in which all
syllables are heavy (sarva-gurau) is established, below (adhastät)
the first (prathamataù) heavy syllable (H) should be written (kuryät)
one light (laghum) syllable (L), and the rest (çeñam) after that
(on the right) should be arranged (viracayet) as in the preceding (ürdhva-samänakam)
line. The meaning is that the above heavy syllables or heavy and light
syllables should all be written below in the same way. This rule should be
applied again and again. When the second line, the third line, etc. are
arranged, there should always be one light syllable written below the first
heavy syllable that appears in the above line, and all the remaining syllables
on the right should be the same as above. In the empty place (üne) that remains
on the left of the light syllable written below the first heavy syllable one
should write (arpayet) heavy syllables (gurün). The plural word ‘gurün’
was used here to express all the numbers that can respectively be applied: one
heavy syllable, two heavy syllables, or any number greater than this. This
procedure (idam) should be applied (vidadhyät) as long as (yävat)
a foot (pädaù) in which all syllables were at first heavy does not (na)
appear (udyät) in a form in which all syllables are light (sarva-laghuù)[3]. This
is called prastära by those who are scholars (paëòitaiù) expert (nipuëaiù)
in syllabic metres (varëa-våtta), that means, this is called syllabic prastära
or ‘expansion’. This is the arrangement for the even syllabic metres. As for
the half even syllabic metres, the feet that constitute half of the verse
should be arranged in this way, and the rest is the same as mentioned above. As
it is said: “ardha-samasya prastäre tv ardhasya prastäraù käryaù”, “The prastära
of the half even metres should be applied to half of the verse.” And regarding
the uneven metres, the arrangement should be done for each foot of the metre.
As it said: “viñama-prastäre päda-catuñöayasya prastäraù käryaù”, “In
the uneven metres, the prastära of the four feet should be done.”
prastära of 2 syllables
|
|
1
2
3
4
|
H H
L H
H L
L L
|
prastära of 3 syllables
|
|
1
2
3
4
5
6
7
8
|
H H H
L H H
H L H
L L H
H H L
L H L
H L L
L L L
|
prastära of 4 syllables
|
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
H H H H
L H H H
H L H H
L L H H
H H L H
L H L H
H L L H
L L L H
H H H L
L H H L
H L H L
L L H L
H H L L
L H L L
H L L L
L L L L
|
अथ वर्णोद्दिष्टम् –
atha varëoddiñöam –
Now the syllabic uddiñöa (serial number) is described –
वृत्तवर्णशिरस्यङ्कान्
विलिख्य द्विगुणं क्रमात् ।
एकं संयोज्य लघ्वङ्कैः सहोद्दिष्टं विभावयेत्
स्वरूपं वीक्ष्य वृत्तस्य तत्सङ्ख्याधीरितः फलम् ॥ ४ ॥
våtta-varëa-çirasy aìkän vilikhya dvi-guëaà kramät
ekaà saàyojya laghv-aìkaiù
sahoddiñöaà vibhävayet |
svarüpaà vékñya våttasya tat-saìkhyä-dhér
itaù phalam || 4 ||
Having written on the top of the syllables of the metre a succession of
numbers that are each the double of the preceding one, and adding 1 to the
total of the numbers marking the light syllables, one should ascertain the uddiñöa.
Having seen the character of a metre, one thus attains knowledge of its serial
number as the result.[4]
अथ
प्रस्तारोपयोग्युद्दिष्टमाह – वृत्तवर्णेति
। वृत्तस्य परिदृश्यमानस्य च्छन्दसो ये लघुगुरुरूपा वर्णास्तेषां शिरसि प्रथमाद्
द्विगुणक्रमादन्कान् विलिख्य स्थानद्विगुणानङ्कान् विन्यस्येत्यर्थः । तेषु ये
लघ्वङ्का लघुवर्णशिरस्था अङ्कास्तैः सहैकमङ्कं संयोज्य मिश्रितं कृत्वा उद्दिष्टं
विभावयेत् । किंसंख्याकमिदं छन्द इति विचिन्तयेदित्यर्थः । यथा त्र्यक्षरे छन्दसि
प्रथमं गुरुद्वयं तत एकं लघु ‘'1 '2 |4’ ईदृग् वृत्तं वीक्ष्य प्रथमेऽक्षर एकको द्वितीये द्विकस्तृतीये चतुष्कः । स
लघोरुपर्यङ्कश्चतुष्करूप एकेन मिश्रितः पञ्चमं वृत्तमिदमिति ज्ञापयति । यथा
चतुरक्षरे छन्दसि प्रथमं गुरुद्वयं ततो लघुस्ततो गुरुः ‘'1 '2 |4 '8’ ईदृग् वृत्तं वीक्ष्य प्रथमे एकको द्वितीये द्विकस्तृतीये
चतुस्कश्चतुर्थे त्वष्टकोऽङ्को लेख्यः । चतुरङ्क एकेन युक्तः पञ्चमं वृत्तमिदमिति
ज्ञापयतीत्युद्दिष्टविधिः । उद्दिष्टफलमाह – स्वरूपमिति । वृत्तस्वरूपं दृष्ट्वा तत्सङ्ख्याज्ञानं
तत्फलम् ॥ ४ ॥
The author now describes the uddiñöa, which is an auxiliary to the
prastära. A sequence (kramät) of numbers (aìkän), each
being the double (dvi-guëän) of the precending one, is to be written (vilikhya)
from the beginning on the top (çirasi) of the light and heavy syllables
(våtta-varëa) of the syllabic metre being analysed. Among them, one
should add together all the numbers on the top of the light syllables (laghv-aìkaiù)
and add (saàyojya) one (ekam), and thus one should ascertain (vibhävayet)
the uddiñöa. That means, he should consider ‘what is the serial number
of this metre?’ For instance, in a metre with three syllables in which there
are two heavy syllables followed by one light syllable, it is like this: ‘H1
- H2 - L4.’ Upon seeing such a metre, one should
understand that there must be 1 on the top of the first syllable, 2 on the
second, and 4 on the third. The number 4 on the light syllable plus 1 indicates
that the serial number of this metre is 5. Another example: in a metre with
four syllables in which there are two heavy syllables followed by one light
syllable and one heavy syllable, it is like this: ‘H1 - H2
- L4 - H8.’ Upon seeing such a metre, one should understand
that it should be written 1 on the top of the first syllable, 2 on the second,
4 on the third, and 8 on the fourth. The number 4 plus 1 indicates that the
serial number of this metre is 5. This
is the rule of the uddiñöa. As for its result, the author says: upon
seeing(vékñya) the character (svarüpam)
of a metre, one obtains knowledge of its serial number (tat-saìkhyä-dhéù)
as the result (phalam).
अथ वर्णनष्टम् –
atha varëa-nañöam –
Now the syllabic nañöa (unknown) is described –
नष्टाङ्के भागमापूर्तेः
कुर्यादर्धं समे लघुः ।
विषमे त्वेकमाधाय
विभक्तव्ये गुरुर्भवेत् ।
ततो नष्टस्य वृत्तस्य
स्वरूपमवबुध्यते ॥ ५ ॥
nañöäìke bhägam äpürteù kuryäd ardhaà same laghuù |
viñame tv ekam ädhäya vibhaktavye gurur bhavet |
tato nañöasya
våttasya svarüpam avabudhyate || 5 ||
One should divide the serial number of an unknown metre half by half. If
the number is even, there is one light syllable; if it is odd, one heavy
syllable. In this case it should be divided after adding 1. By this process the
character of the unknown metre is understood.
अथ तदुपयोगिनष्टमाह – नष्टाङ्क इति । त्र्यक्षरादिप्रस्तारे पञ्चमं
षष्ठमन्यद्वा नष्टं किञ्चिच्छन्दः । तत् कीदृग् भवेदिति पृष्टे
नष्टस्यादृश्यमानस्य वृत्तस्य सङ्ख्याके यावद् वृत्तवर्णपूर्तिं विभागं कुर्यात् ।
अर्धं यथा स्यात्तथेत्यर्धार्धतया तं विभज्य विभज्य गुरुलघुरूपान् वर्णान्
विलिखेत् । ततो वृत्तस्वरूपं व्यक्तीभवेत् । तद्विभागो द्विविधेत्याह समे इति ।
विभक्तव्ये नष्टसङ्ख्याके समे सति तं विभज्य लघुर्लेख्यः । विषमे तु सति
तद्विभागासम्भवात् तत्रैकं निक्षिपेत् । सङ्ख्याके तस्मिन् विभक्तव्ये
गुरुर्लेख्यः । समाङ्कविभागे लघुर्विषमाङ्कविभागे तु गुरुरिति भावः । यथा
त्र्यक्षरप्रस्तारे नष्टं पञ्चमं छन्दः कीदृगिति पृष्टे पञ्चानां वैषम्येण
विभागासम्भवात् तत्रैकं विनिक्षिपेत् । जाताः षट् तेषां विभागो गुरुः । अथ
त्रयाणां वैषम्येण विभागासम्भवात् तत्रैकं विनिक्षिपेत् । जाताश्चत्वारस्तेषां
विभागे गुरुः । द्वयोः साम्यात् तद्विभागे लघुरिति । वृत्तवर्णानामागतत्वादतः परं
न विभाग इति । त्र्यक्षरे पञ्चमो भेदो
गुरुद्वयैकलघुरूपो व्यक्तीभवति ‘ऽ ऽ । ’ । यथा च चतुरक्षरे षष्ठं वृत्तं नष्टं
कीदृगिति पृष्टे षण्णां साम्यात् तद्विभागे लघुः । त्रयाणां वैषम्यात् तत्रैकं
निक्षिपेत् । तेषां विभागे गुरुः । द्वयोः साम्यात् तद्विभागे लघुः । एकस्य
विभागासम्भवात् तत्रैकं निक्षिपेत् । जातौ द्वौ । तयोर्विभागे गुरुरिति
लघुगुरुलघुगुरुरूपश्च चतुरक्षरे षष्ठो भेदो व्यक्तीभवति ‘। ऽ । ऽ ’ । नष्टफलमाह तदिति । ततः समविषमनष्टाङ्कविभागागतलघुगुरुवर्णोपादानादित्यर्थः
। वृत्तसङ्ख्यया वृत्तस्वरूपज्ञानं नष्टफलमित्यर्थः ॥ ५ ॥
Here the author describes the nañöa, which is an auxiliary to the
uddiñöa. If in the prastära of three or more syllables there is a
certain metre belonging to the fifth, sixth, or other serial number, which
metre is that? If this is asked, then one should divide (vibhägaà kuryät)
the serial number of this unknown metre (nañöäìke) until all syllables
have been completed. One should divide again and again half by half (ardham)
and write down the syllables, either heavy or light, and then the character of
the metre will become clear. This division is twofold, as the author states: if
the unknown metre’s serial number to be divided (vibhaktavye) is even (same),
then one light syllable (laghuù) should be written; if it is odd, due to
the impossibility of its division, 1 should be added and then one heavy
syllable is should be written. For example, in the prastära of an
unknown metre with three syllables belonging to the fifth serial number, which
metre is that? If this is asked, then due to the impossibility of dividing the
odd number 5, 1 should be added. The result is 6, and upon dividing it one
heavy syllable should be written. Half of 6 equals 3, which being odd cannot be
divided, and therefore 1 should be added. The result is 4, and upon dividing it
one should write one heavy syllable. Half of 4 equals 2, which is even, and
therefore upon dividing it one should write one light syllable. Since all the
syllables of the metre have thus appeared, there is no further division. In
this way it becomes clear that in a metre with three syllables belonging to the
fifth division (serial number) there is this combination: H-H-L. Another
example: if there is an unknown metre with four syllables belonging to the
sixth division, which metre is that? If this is asked, then one should write
one light syllable first, for 6 is even. 3 is odd, and therefore 1 should be
added, and upon dividing it one should write one heavy syllable. 2 is even, and
therefore upon dividing it there is one light syllable. 1 cannot be divided,
and therefore 1 should be added. The result is 2, and upon dividing it one
should write one heavy syllable. In this way it becomes clear that in a metre
with four syllables belonging to the sixth division there is this combination: L-H-L-H.
The result of the nañöa is stated: since (tataù) it enumerates
all the light and heavy syllables through the division of the even and odd
serial numbers of an unknown (nañöasya) metre (våttasya), the
result of the nañöa is knowledge of the character (svarüpam) of
the metre.
अथ वर्णमेरुः –
atha varëa-meruù –
Now the syllabic meru is described –
कोष्ठान्
कृत्वैकैकवृद्धान् द्विमुख्यानाद्यानन्त्यांश्चैकयुक्तान् विदध्यात् ।
मूर्धाङ्काभ्यां मध्यमान् संनियुज्यादेष प्रोक्तो वर्णमेरुः कवीन्द्रैः ।
सर्वगुर्वादयो ये
स्युर्भेदाः प्रसृतजातिषु ।
तत्सङ्ख्या वृत्तसङ्ख्या च
ज्ञायते वर्णमेरुणा ॥ ६ ॥
koñöhän kåtvaikaika-våddhän dvi-mukhyän ädyän antyäàç caika-yuktän
vidadhyät| mürdhäìkäbhyäà madhyamän saàniyujyäd eña prokto varëa-meruù kavéndraiù
|
sarva-gurv-ädayo ye syur bhedäù prasåta-jätiñu |
tat-saìkhyä våtta-saìkhyä ca jïäyate varëa-meruëä || 6 ||
One should arrange squares starting with two of them, which will then be
increased one by one. The number 1 should be written in the first and last
squares of each line, and the squares in the middle should be filled with a
number that is the combination of the two squares above each of them. This is
called syllabic meru by the foremost poets. By the syllabic meru
are known the numbers of different combinations of heavy and/or light syllables
among the expanded metrical categories, and also the numbers of metres.
अथ वर्णमेरुमाह – कोष्ठानिति । द्वौ कोष्ठौ मुख्यावादिमौ येषां तानेकैकवृद्धान् कोष्ठान् कृत्वा । अयमर्थः – एकाक्षरादिषु षड्विंशत्यक्षरान्तेषु प्रसृतेषु कति
भेदाः सर्वगुरवः कत्येकादिलघव एकादिगुरवो वा कति सर्वलघवः का वा प्रस्तारसङ्ख्येति
प्रश्ने मेरुणोत्तराय तस्य प्रवृत्तिः । तत्रैकाक्षरादिक्रमेण यावदिष्टं
पङ्क्तिकोष्ठान् कृत्वा तेषु प्रथमादिक्रमेण द्विप्रमुखानेकैकवृद्धान् कोष्ठान्
विदध्यात् । तत्र प्रथमे पङ्क्तिकोष्ठे कोष्ठद्वयं द्वितीये कोष्ठत्रयं तृतीये
कोष्ठचतुष्टयमित्येवमग्रिमेषु बोध्यम् । एवं निर्मितेषु कोष्ठेष्वाद्यानन्त्यांश्च
कोष्ठानेकाङ्कयुक्तान् कुर्यात् । मध्यमान् कोष्ठांस्तु मूर्धकोष्ठद्वयाङ्कावेकीकृत्य
तेन संनियुज्यात् पूरयेत् । एष वर्णमेरुः कवीन्द्रैरुक्तः । अस्य फलमाह – सर्वगुर्विति । प्रसृतायां जातौ
सर्वगुर्वेकादिलघुसर्वलघुरूपा ये भेदाः सन्ति तेषां सङ्ख्या मेरुणा ज्ञायते ।
मेरुपङ्क्तिकोष्ठस्थैरुत्तरोत्तरैरङ्कैः क्रमादिति शेषः । पूर्वपूर्वैस्त्वेकादिगुरूणामिति
बोध्यम् । वृत्तसङ्ख्या तु पङ्क्तिस्थकोष्ठाङ्कयोगेन ज्ञायत इति । यथा – एकाक्षरप्रस्तारे आदावेकगुरुरन्ते
त्वेकलघुर्वृत्तसङ्ख्या द्विकम् । द्व्यक्षरे त्वादौ सर्वगुरुः स्थानद्वये
एकलघुरन्ते सर्वलघुः सङ्ख्या तु चतुष्कम् ।
त्र्यक्षरे त्वादौ सर्वगुरुः स्थानत्रये एकलघुः स्थानत्रये द्विलघुरन्ते
सर्वलघुः सङ्ख्या त्वष्टकम् । चतुरक्षरे त्वादौ सर्वगुरुश्चतुर्गुरुरन्यत्राभावात्
स्थानचतुष्के त्रिगुरुः स्थानषट्के द्विगुरुः स्थानचतुष्के एकगुरुरन्ते सर्वलघुः
सङ्ख्या तु षोडशमिति ॥ ६ ॥
The author now describes the meru: in the beginning there are two
squares which will increase one by one. In the prastäras from 1 to 26
syllables, how many different metres have only heavy syllables? How many start
with one light syllable? How many start with one heavy syllable? How many have
only light syllables? Or what is the number of the expansions of light and
heavy syllables? If these questions are asked, then the meru is employed
to answer them. Starting from one syllable, one should progressively arrange (vidadhyät)
as many lines of squares (koñöhän) as one wishes, among which there are
two in the beginning (dvi-mukhän), and the following lines should each
increase by one (ekaika-våddhän) square. It should be understood that in
the first line there are two squares, in the second line there are three, in
the third line there are four, and so on. In the squares arranged in this way
there is 1 (eka-yuktän) in the beginning (ädyän) and at the end (antyän).
The squares situated in the middle (madhyamän) should each be filled (saàniyujyät)
with a number that is the result of the addition of the numbers of the two
squares above (mürdhäìkäbhyäm) each of them. This (eñaù) is what
is called (proktaù) meru by the foremost poets. Its result is
stated: upon expanding one metrical category (prasåta-jätiñu), through
the meru are progressively known the numbers (tat-saìkhyä) of the
different combinations (bhedäù): with only heavy syllables, one light
syllable in the beginning, only light syllables, etc. (sarva-gurv-ädayo)
by means of successive numbers situated in its squares. This is the rest of the
sentence. It should be understood that the mentioned numbers starting with 1
stand for the sequence of the prastäras starting with only heavy
syllables. The number of metres (våtta-saìkhyä) is known (jïäyate)
by adding the numbers inside the squares. For example, in the prastära of one syllable,
there is one heavy syllable in the beginning and one light syllable at the end,
and thus the number of metres is 2. In the prastära of two syllables, in
the first position all syllable are heavy, in the two next positions one
syllable is light and one is heavy, and in the last position all syllables are
light, and thus the number of metres is 4. In the prastära of three
syllables, in the first position all syllables are heavy, in three positions
there is one light syllable, in three positions there are two light syllables,
and in the last position all syllables are light, and thus the number of metres
is 8. In the prastära of four syllables, in the first position all
syllables are heavy, that means, four syllables are heavy, for this combination
is not possible in other positions, in four positions there are three heavy
syllables, in six positions there are two heavy syllables, in four positions
there is one heavy syllable, and in the last position all syllables are light, and
thus the number of metres is 16.[5]
अथ वर्णपताका –
atha varëa-patäkä –
Now the syllabic patäkä (flag) is described –
कृत्वा तावद् भुवि रम्यां
पताकां तस्यामुद्दिष्टवदङ्कान्
१ २ ४ ८ निदध्यात् ।
पूर्वाङ्केनापूरयन्नुत्तराङ्कं
पुच्छे तस्या निक्षिपेत्तं तु वृद्धम्
कुर्यादेवं त्यक्तवृत्ताधिकाङ्को
यावत् प्रस्तारप्रभेदा ।
एतां ब्रूते वर्णनिष्ठां
पताकां सुज्ञैर्गम्यां पिङ्गलो नागराजः ॥ ७ ॥
kåtvä tävad bhuvi ramyäà patäkäà tasyäm uddiñöa-vad aìkän1 2 4 8 nidadhyät | pürväìkenäpürayann uttaräìkaà pucche tasyä nikñipet taà tu våddhaà kuryäd
evaà tykta-våttädhikäìko yävat prastära-prabhedä bhavanti
etäà brüte varëa-niñöhäà patäkäà sujïair gamyäà piìgalo nägaräjaù || 7 ||
etäà brüte varëa-niñöhäà patäkäà sujïair gamyäà piìgalo nägaräjaù || 7 ||
Having drawn a beautiful flag on the ground, one should place on it the
numbers 1, 2, 4, and 8 just like in the uddiñöa. Each number should be
added to the subsequent one, and the total should be placed below. One should
keep on doing so until all the different prastäras are there, but
he should give up the repeated numbers and those beyond the total number of prastäras.
This is what Piìgala, the King of the serpents, calls syllabic patäkä,
which is understood by the learned.
मेरौ चतुर्वर्णप्रस्तारस्य
षोडशभेदाः सन्ति । तत्रैकः सर्वगुरुश्चत्वारस्त्रिगुरवः षड् द्विगुरवश्चत्वार
एकगुरव एकः सर्वलघुरिति । एवं षोडशभेदा भवन्ति । तस्मिन् प्रस्तारे कतमस्थाने
सर्वगुरुः कतमस्थाने त्रिगुरुः कतमस्थाने द्विगुरुः कतमस्थान एकगुरुः कतमस्थाने सर्वलघुः
का का प्रस्तारसङ्ख्येति प्रश्ने पताकयोत्तरं देयमिति तदर्थं पताकामाह – कृत्वेति । भुवि रम्यां पताकां कृत्वा लिखित्वा
तस्यां वर्णोद्दिष्टवदङ्कान् निदध्यादर्पयेत् । यथा चतुर्वर्णप्रस्तारे १ २ ४ ८ एकद्विचतुरष्टाङ्का
वृत्तवर्णशिरसि भवन्ति तथा पताकावंशदण्डे ते लेख्या इत्यर्थः । अथ तस्या
उद्दिष्टाङ्कपङ्क्तेरुत्तराङ्कं परपराङ्कं पूर्वपूर्वाङ्केनापूरयन् योजयन्
परपराङ्कवृद्धं सन्तं तस्याः पताकायाः पुच्छेषु निक्षिपेदधोऽधः स्थापयेत् । यावत्
प्रस्तारप्रभेदा भवन्ति पूर्यन्ते तावदेवं कुर्यात् । मेरूक्तप्रस्तारसङ्ख्यया पताकाङ्का
वर्धनीया इत्यर्थः । त्यक्तेति वृत्त आगतो योऽङ्को यश्च प्रस्तारसङ्ख्यातोऽधिकस्तं
तं त्यजन्निति ॥ ७ ॥
In the meru there are sixteen different metres in the prastära
of four syllables. Therein, one has only heavy syllables, four have three heavy
syllables, six have two heavy syllables, four have only one heavy syllable, and
one has only light syllables. In this way, there are sixteen different metres.
In which position in this prastära is the metre with only heavy
syllables? In which position are the metres with three heavy syllables? In
which position are the metres with two heavy syllables? In which position are
the metres with one heavy syllable? In which position is the metre with only
light syllables? What are their numbers in the prastära? If these
questions are asked, the answer is given by the patäkä. Therefore the
author states: having drawn (kåtvä) a beautiful (ramyäm) flag (patäkäm)
on the ground (bhuvi), one should place (nidadhyät) the numbers in
the same way as in the uddiñöa. For example, in the prastära of
four syllables, the numbers 1, 2, 4, and 8 are on the top of the syllables of
the metre, that means, they should be written on the flagpole. Then each of the
preceding uddiñöa numbers (pürväìkena) should be added (äpürayan)
to the subsequent one (uttaräìkam), and the resultant number (våddham)
should be placed (nikñipet) in the tail (pucche) of the flag (tasyäù),
that means, below each other. This procedure should be done (kuryät) until
(yävat) all the different (prabhedäù) prastäras are
completed, that means, the flag should be filled with the same numbers of prastäras
expressed in the meru. The numbers that have already occurred (våtta)
and the numbers beyond (adhikäìkaù) the number of different prastäras
are to be given up (tyakta).
Patäkä of syllabic metres up to 4 syllables per foot:
1
|
2
|
4
|
8
|
16
|
3
5
9
|
6
7
13
10
11
|
12
14
15
|
सर्वगुर्वादयो भेदा मेरौ
ये परिदर्शिताः ।
तेषां स्थानानि बोध्यन्ते
विनान्वेषात् पताकया ॥ ८ ॥
sarva-gurv-ädayo bhedä merau ye paridarçitäù |
teñäà sthänäni bodhyante vinänveñät patäkayä || 8 ||
The number of different combinations of heavy and/or light syllables is
shown in the meru, and their respective positions are known through the patäkä
without having to search for them.
पताकाफलमाह – सर्वेति । पताकाङ्कदर्शनादेव सर्वगुर्वादिभेदानां
स्थानानि ज्ञायन्त इत्यर्थः । तथा हि यथा चतुर्वर्णप्रस्तारे १ २ ४ ८ एकद्विचतुरष्टाङ्का देयाः
। अत्रैकाङ्कस्य पूर्वाङ्काभावाद्
द्वितीयाङ्कमारभ्य पङ्क्तिः पूर्यते । तत्र पूर्वाङ्क एकाङ्क एव
तस्मादुत्तराद् द्वितीयादयस्ते चाव्यवहितगत्या पूर्याः । तथा हि – एकद्वियोगे त्र्यङ्कः ३ । स द्वितीयाधः स्थाप्यः ।
एकचतुर्योगे पञ्चमाङ्कः ५ त्र्यङ्काधः ।
एकाष्टयोगे नवाङ्कः ९ पञ्चमाङ्काधः । ततः पङ्क्तिपरित्यागो मेरौ त्रिगुरूणां
रूपाणां चतुःसङ्ख्यादर्शनात् । अथ चतुरङ्कस्याधः पूरितपङ्क्तिस्थाङ्का
उत्तराङ्कमिलिता देयाः । तत्र प्रथमः पूरित एवेति त्यज्यते । द्विचतुर्योगे षडङ्कः
६ चतुरङ्काधः स्थाप्यः । त्रिचतुर्योगे सप्ताङ्कः ७ षडङ्काधः । पञ्चचतुर्योगादागतो
नवाङ्को न स्थाप्यो वृत्तत्वात् ।
नवचतुर्योगे त्रयोदशाङ्कः १३ सप्ताङ्काधः । द्व्यष्टयोगे दशाङ्कः १०
त्रयोदशाङ्काधः । त्र्यष्टयोगादेकादशाङ्कः ११ दशाङ्काधः । पञ्चाष्टयोगे त्रयोदशाङ्को वृत्त एव । ततः
पङ्क्तित्यागो मेरुसङ्ख्यापरिमाणोक्तेः । अथ चतुरष्टयोगे द्वादशाङ्कः १२
अष्टाङ्काधः स्थाप्यः । षडष्टयोगे चतुर्दशाङ्कः १४ द्वादशाङ्काधः । सप्ताष्टयोगे
पञ्चदशाङ्कः १५ चतुर्दशाङ्काधः । त्रयोदशाष्टयोगेन नाग्रेऽङ्कसञ्चारः
प्रस्तारभेदाधिक्यापत्तेः । अष्टाङ्काग्रे षोडशाङ्कस्तु सर्वलघुज्ञापनायेति
सम्प्रदायः । तथा चतुर्वर्णप्रस्तारे प्रथमो भेदः सर्वगुरुः ।
द्वित्रिपञ्चनवस्थानभेदास्त्रिगुरवः । चतुःषट्सप्तदशैकादशत्रयोदशस्थानस्था
द्विगुरवः । अष्टद्वादशचतुर्दशपञ्चदशस्थानस्था एकगुरवः । षोडशस्थानस्थस्तु
सर्वलघुः । प्रस्तारसङ्ख्या तु षोडशैवेति सर्वान्त्याङ्कादवगतम् । अनया दिशा
षड्विंशतिवर्णपर्यन्तं पताकारचनं विज्ञैर्बोध्यम् ॥ ८ ॥
The result of the patäkä is stated here. By looking at the patäkä
the different positions of all the combinations of heavy and/or light
syllables are known. For example, in the prastära of four syllables, the
numbers 1, 2, 4, and 8 are to be written. Since there is no number before the
number 1, the vertical line is to be filled starting from the number 2 in the
second line. There will be always only 1 in the first line, and from the second
line onwards the numbers are to be filled in sequence. For instance, 1 plus 2
equals 3, which is to be placed below 2. 1 plus 4 equals 5, which is to be placed
below 3. 1 plus 8 equals 9, which is to be placed below 5, and then this
vertical line is to be given up, for in the meru it is seen that there
are four metres with three heavy syllables.
Then the line below 4 is to be filled by adding it to each of the numbers
of the previously completed vertical line.
A number that has already been filled is given up. 2 plus 4 equals 6,
which is to be placed below 4. 3 plus 4 equals 7, which is to be placed below
6. 5 plus 4 equals 9, but it is not to be placed, for it has already appeared
before. 9 plus 4 equals 13, which is to be placed below 7. 2 plus 8 (in the top
horizontal line) equals 10, which is to be placed below 13. 3 plus 8 equals 11,
which is to be placed below 10. 5 plus 8 equals 13, which has already appeared
before, and therefore this line is to be given up, for it already has the same
amount of numbers indicated in the meru. Then 4 plus 8 (in the top
horizontal line) equals 12, which is to be placed below 8. 6 plus 8 equals 14,
which is to be placed below 12. 7 plus 8 equals 15, which is to be placed below
12. There is no further addition of 13 and 8, for otherwise there would be more
numbers than the total of different prastäras. The number 16 after 8
indicates the single metre in which all syllables are light. This is the
traditional system. Thus in the prastära of four syllables, in the first
position all syllables are heavy; in the second, third, fifth, and ninth
positions there are three heavy syllables; in the fourth, sixth, seventh,
tenth, eleventh, and thirteenth positions there are two heavy syllables; in the
eighth, twelfth, fourteenth, and fifteenth positions there is one heavy
syllable; and in the sixteenth position all syllables are light. Since it appears after all the other numbers,
16 is understood to be the number of prastäras. The arrangement of the patäkä
is done in this manner up to 26 syllables, as understood by the learned.
अथ वर्णमर्कटी –
atha varëa-markaöé –
Now the syllabic markaöé is described –
रचयित्वा षट् पङ्क्तीः
कोष्ठानपि वर्णसङ्ख्यकान् ।
तासां भर
पूर्वामेकाद्यैर्द्विगुणैर्द्वितीयां च ॥ ९ ॥
racayitvä ñaö paìktéù koñöhän api varëa-saìkhyakän |
täsäà bhara pürväm ekädyair dvi-guëair dvitéyäà ca || 9 ||
Having drawn six lines and six squares in all of them with the numbers
of syllables, you should fill the first line with 1, 2, 3, etc., and the second
line with 2, 4, 8, etc.
मेरावुक्थादीनि षड्विंशतिच्छन्दांसि
सन्ति । तानि किंसङ्ख्यकानीति । अथोक्थादिच्छन्दसां प्रत्येकं भेदाः कति भवन्ति, तत्प्रभेदानामक्षराणि कति, तेष्वक्षरेषु
कति गुरूणि कति च लघूनि भवन्ति, तत्प्रभेदानां
मात्राः कतीति प्रश्ने मर्कट्योत्तरं देयमिति तदर्थं वर्णमर्कटीं दर्शयति – रचयित्वेति । हे सखे मर्कटीनिर्मिमाणस्त्वं षट्
पङ्क्तीः कृत्वा तासां पङ्क्तीनां वर्णसङ्ख्यकान् कोष्ठानपि कृत्वा
षड्विंशतिवर्णपर्यन्तानामुक्थादिवर्णच्छन्दसां छन्दस्तद्भेदादिषडङ्कसङ्ख्या
ज्ञातुकामस्त्वं तासु षट्सु पङ्क्तिषु तत्पर्यन्तानां वर्णानां यावदिष्टं
कोष्ठकान् निर्मायेत्यर्थः । पूर्वां प्रथमां
पङ्क्तिमेकाद्यैरेकद्वित्र्यादिभिरङ्कैर्भर पूरय । द्व्यादिभिर्द्विगुणितैरङ्कैर्द्वितीयां
च पङ्क्तिं भर । प्रथमः कोष्ठो द्व्यङ्केन द्वितीयश्चतुरङ्केन तृतीयोऽष्टाङ्केन
पूरणीयः । एवमग्रेऽपीत्यर्थः ॥ ९ ॥
Starting with the metres with one syllable (ukthä) per quarter,
there are twenty-six metres (categories) in the meru. What is the number
of these metres? How many different varieties (bheda) of metres starting
with the ukthä are there? How many syllables are there in each variety?
Among the syllables, how many are heavy and how many are light? How many
metrical units are there in each variety? If these questions are asked, the
answer is given by the markaöé. Therefore, the author here explains the
syllabic markaöé: O my friend, while arranging the markaöé, you
should draw (racayitvä) six (ñaö) lines (paìktéù), and all
of them (täsäm) should have squares (koñöhän) with the numbers of
syllables (varëa-saìkhyakän), that means, desiring to know the numbers of the metres, their varieties,
syllables, heavy syllables, light syllables, and metrical units among the
syllabic metres from 1 up to 26 syllables, you should draw as many squares as
you wish in those six lines up to 26. Fill (bhara) the first line (pürväm)
with the numbers 1, 2, 3, etc. (ekädyaiù), and fill the second line (dvitéyäm)
with the number 2, and each succeeding number should be the double (dvi-guëaiù),
that means, the first square should be filled with 2, the second with 4, the
third with 8, and so on.
प्रथमादिकयोरुभयोर्गुणितैरङ्कैस्तृतीयां
च
अत्र तृतीयाङ्कार्धैस्तुर्यामथ पञ्चमीं चापि । पञ्चम्यङ्कैस्त्रिगुणैः
षष्ठीमपि वर्णमर्कटी ह्येषा ॥ १० ॥
prathamädikayor ubhayor guëitair aìkais tåtéyäà ca
atra tåtéyäìkärdhais turyäm atha païcaméà cäpi |
païcamy-aìkais tri-guëaiù ñañöhém
api varëa-markaöé hy eñä || 10 ||
The third line should be filled with the product of the numbers of the
first and second lines; the fourth and fifth lines should be filled with half
of the numbers of the third line; and the sixth line should be filled with
three times the numbers of the fifth line: this is the markaöé.
उभयोः
प्रथमद्वितीयपङ्क्त्योरङ्कैर्गुणितैस्तृतीयां च पङ्क्तिं भर । प्रथमे कोष्ठे
द्व्यङ्केन द्वितीयेऽष्टाङ्केन तृतीये चतुर्विंशत्यङ्केन चतुर्थे चतुःषष्ट्यङ्केनेत्येवमादिरीत्या
तृतीयां पूरयेत्यर्थः । तृतीयपङ्क्तिमेवं पूरयित्वा
तस्यास्तृतीयपङ्क्तेरङ्कार्धैश्चतुर्थीं पञ्चमीं च पङ्क्तिं भर । अथ त्रिगुणितैः
पञ्चम्यङ्कैः षष्ठीं च पङ्क्तिं भरेत्यर्थः । एषा हीदृग्लक्षणा वर्णमर्कटी भवेत् ॥
१० ॥
Fill the third line (tåtéyäm) with the product (guëitaiù) of
the numbers (aìkaiù) of both (ubhayoù) the first and second lines
(prathamädikayoù), that means, the first square with 2, the second with
8, the third with 24, the fourth with 64, and the rest in the same manner.
Having filled the third line in this way, fill the fourth (turyäm) and
the fifth (païcamém) with half of each number of the third line (tåtéyäìkärdhaiù)
respectively. Then fill the sixth line (ñañöhém) with the numbers of the
fifth line (païcamy-aìkaiù) multiplied by 3 (tri-guëaiù). The (eñä)
syllabic markaöé has such kind of characteristics.
Markaöé of syllabic metres from 1 to 6 syllables per quarter[6]:
छन्दस्तद्भेदाक्षरगुरुलघुकलिकाप्रसङ्ख्यात्री
॥ ११ ॥
chandas-tad-bhedäkñara-guru-laghu-kalikä-prasaìkhyätré || 11 ||
The markaöé enumerates the metres, their different categories,
the total syllables, the heavy syllables, the light syllables, and the morae.
इति च्छन्दःकौस्तुभे
वर्णप्रस्तारेऽष्टमी प्रभा ।
iti cchandaù-kaustubhe varëa-prastäre’ñöamé prabhä |
Thus ends the eighth ray of the Chandaù-kaustubha,
which describes the expansions of the syllabic metres.
मर्कटीज्ञानफलमाह – छन्देति । तत्र प्रथमया पङ्क्त्या छन्दःसङ्ख्या
द्वितीयया तद्भेदसङ्ख्या तृतीयया तदक्षरसङ्ख्या चतुर्थ्या गुर्वक्षरसङ्ख्या
पञ्चम्या लघ्वक्षरसङ्ख्या षष्ठ्या तु कला ज्ञायन्त इत्यर्थः । यथैकाक्षरमुक्था
छन्दः प्रथमं भवति, तस्य
द्वौ भेदौ । तस्य द्विभेदस्य द्वे अक्षरे, तयोरेकं गुर्वेकं लघु । कलास्तु तिस्रो भवन्तीति
षड्भिः कोष्ठैः क्रमादमी षट् प्रत्ययाः प्रजायन्ते । यथा वा द्व्यक्षरमत्युक्था
छन्दो द्वितीयं भवति । तस्य चत्वारो भेदा अष्टौ वर्णास्तेषु चत्वारो गुरवश्चत्वारो
लघवः कलास्तु द्वादशेति । एवं मध्यादिषु बोध्यम् ॥ ११ ॥
इति श्रीविद्याभूषणविरचिते
छन्दःकौस्तुभभाष्ये वर्णप्रस्तारादिनिरूपणेऽष्टमी प्रभा ॥
Here the result of knowing the markaöé is described. By the first
line of the markaöé is known the number of the metre (chandaù);
by the second line, their different varieties (tad-bhedäù); by the third
line, the total number of syllables (akñara) in the varieties; by the
fourth line, the number of heavy syllables (guru); by the fifth line,
the number of light syllables (kalikä); and by the sixth line, the
number of morae. For example, the metre with one syllable (ukthä) is the
first, and it has two different categories. The number of syllables in these
two categories is 2, among which one is heavy and one is light, and the morae
are 3. These six solutions (pratyaya) are known by these six squares. Another
example: the second metre is the atyukthä. It has 4 different categories
and a total of 8 syllables, among which 4 are heavy and 4 are light, and the
number of morae is 12. The other metres like the madhyä (3 syllables),
etc. are to be understood in the same way.
Thus ends Çréla Baladeva Vidyäbhüñaëa’s
commentary on the eighth ray of the Chandaù-kaustubha, which explains
the expansions of the syllabic metres.
[1] The word pratyaya in this context can be translated as ‘analysis
or ‘solution’.
[2] The
horizontal columns of the tables here are representing each foot, and the
different combinations are also referred to as prastäras (expansions).
[3] For
example, in the table of the prastära of three syllables, the first line
has only heavy syllables; the second line has one light syllable below the
first heavy syllable of the first line, and the rest is the same; the third
line has one light syllable below the first heavy syllable of the second line,
the following syllable is the same as above, and the preceding syllable must be
heavy; the fourth line has one light syllable below the first heavy syllable of
the third line, and the rest is the same; the fifth line has one light syllable
below the only heavy syllable in the fourth line, and the preceding syllables
must be heavy; the sixth line has one light syllable below the first heavy
syllable of the fifth line, and the rest is the same, etc.
[4] The serial number here refers to the order of the
different varieties (bheda) that exist within a category of metres with
the same number of syllables. For example, there are 16 varieties of metres
with 4 syllables per quarter, among which the one with only heavy syllables is
the first and receives the serial number 1. Thus there are successively 16
serial numbers here.
[5] In the meru
chart, the outside numbers on the left side indicate the number of syllables,
and those on the right side indicate the total combinations of light and/or
heavy syllables. In the third horizontal line, which represents the
combinations in feet with three syllables, the number 1 indicates that there is
one metre with only heavy syllables; the number 3 indicates that there are
three metres with two heavy syllables; the next number 3 indicates that there
are three metres with one heavy syllable; and the last number 1 indicates that
there is one metre with only light syllables. Similarly, in the sixth line, the
equivalents are – 1: 1 all heavy; 6: 5
heavy; 15: 4 heavy; 20: 3 heavy; 15: 2 heavy; 6: 1 heavy; 1: 1 all heavy. In
other words, the first number 1 will always represent the group with only heavy
syllables, and the next number will represent the maximum number of heavy
syllables combined with a single light syllable plus 1. Then each of the
following numbers will have one heavy syllable less, till all syllables are
light. This can be expanded up to 26 syllables per foot.
[6] In this
chart, the number of syllables is the total in all the different varieties of
metres with the same number of syllables. For example, there are two varieties
of metres with one syllable per quarter, which can have either one heavy
syllable or one light syllable. Both make a total of two syllables and three
syllabic morae.